### Weather Associated with the Fall-2000 Turbulence Flight Tests

David W. Hamilton and Fred H. Proctor

NASA Langley Research Center

Hampton Virginia

Session: Airborne Turbulence Warning System
Weather Accident Prevention Annual Project Review
5-7 June 2001, Cleveland, Ohio



### **Outline**

- Introduction
- Flight Experiments
  - Equipment for turbulence detection
  - Flight requirements
  - Flight preparations
- Turbulence Metrics
- Research Flights
- Summary



### **Turbulence Threat**

- Sudden, unexpected encounters with turbulence, usually lasting 10-30 seconds, have led to frequent injuries aboard commercial aircraft
- A recent study of 44 turbulence encounters resulting in injuries:
  - 82% were found to be near or within convective activity
  - Mountain wave (2%), CAT (16%)



## **Purpose**

- Test turbulence sensors & their hazard algorithms
  - In situ
  - Radar
- Provide data for developing/testing detection algorithm
- Provide data for model validation
- Provide data for turbulence characterization



### Flight Experiments

 NASA-Langley's ARIES B-757 flew into regions favorable for convectivelyinduced turbulence

- ARIES equipment
  - In situ sensors measure wind, temperature and acceleration
  - Onboard Doppler radar for forward turbulence detection
- Data collected for events ranging from smooth air to severe turbulence



### Flight Requirements

- Flight days were chosen based on likelihood of convectively-induced turbulence within flight range of NASA Langley
  - Test days limited by availability of B-757
- Altitudes of interest: between 18,000 and 40,000 ft
- Direct penetration into regions with Level 3 radar reflectivity were avoided



### Flight Preparations

- Meteorology team at NASA-Langley prepared: 2-day, 1-day, and day-of forecasts in support of flight tests
  - Brief researchers
  - Brief pilots for flight planning
- Products Used:
  - NCEP models, i.e. RUC, ETA, etc.
  - NC State's operational mesoscale model
  - Airmets, Pireps, NCAR's ITFA
  - Satellite and Radar
- Meteorologist on board provided guidance into turbulent regions



#### **Turbulence Metrics**

- Quantification of in situ turbulence:
  - Root mean square of normal load acceleration:  $\sigma_{\Lambda n}$
  - Eddy dissipation rate:  $\varepsilon^{1/3}$
- Defined a significant turbulence event as:  $\sigma_{\Lambda n} > 0.15$ 
  - $-\sigma_{\Lambda n} > 0.20$  moderate
  - $-\sigma_{\Lambda n} > 0.30$  severe



## The Flight Experiments

R-181, November 16, 2000

R-190, December 13, 2000

R-191, December 14, 2000



| Flight<br>Day              | Weather                                                    | Primary<br>Region<br>of<br>Interest | Peak<br>Storm<br>Tops<br>(k ft) | Cell<br>Movement<br>(from) | # of<br>Events<br>w/<br>Sign.<br>Turb. |      | <i>In Situ</i><br>ulence<br>ε <sup>1/3</sup><br>(m <sup>2/3</sup> /s) |
|----------------------------|------------------------------------------------------------|-------------------------------------|---------------------------------|----------------------------|----------------------------------------|------|-----------------------------------------------------------------------|
| R 181<br>16<br>Nov<br>2000 | Broad Area of Rain w/ Embedded Convective Cells            | S.<br>Miss.<br>&<br>La.             | 30                              | WSW at<br>45 kts           | 3                                      | 0.21 | 0.44                                                                  |
| R 190<br>13<br>Dec<br>2000 | Broad Area of Rain & Convective Cells w/ Embedded T'storms | NE<br>La.                           | 43                              | SW at<br>65 kts            | 2                                      | 0.35 | 0.78                                                                  |
| R 191<br>14<br>Dec<br>2000 | Narrow Line of Convective Cells/ T'storms                  | Florida<br>Pan.<br>& S.<br>Georgia  | 40                              | SW at<br>40 kts            | 2                                      | 0.44 | 0.84                                                                  |

### R 181 – Nov 16, 2000

- Mississippi-Louisiana Gulf Coast region favorable for convective turbulence
- Broad overrunning of rain with embedded convective cells
  - Peak storm top: 30,000 ft
  - Cell movement: from west-southwest at 45 kts
- 3 significant turbulence events with peak in situ measurement:
  - $-\sigma_{\Delta n} = 0.21$
  - $-\epsilon^{1/3} = 0.44$



Flight Path for 181



## Flight Path 181 – RMS Normal Loads



## Reported PIREPS on Nov. 16, 2000 1749 – 2020 UTC

Pilot Reports (PIREPs) of Turbulence 1749z - 2020z 11/16/\*\*





## Flight 181 – Path with Nowrad





# 1 km Resolution Visible Satellite 2115 Z November 16, 2000





# 4 km Resolution Infrared Satellite 2015 Z November 16, 2000



| Event | Altitude<br>(MSL)<br>(k ft) | Peak <i>In Situ</i> Turbulence $\sigma_{\Delta n}$ $\epsilon^{1/3}$ $(m^{2/3}/s)$ |      | Peak Vertical<br>Wind (m/s)<br>*from 1Hz data<br>Max Min |          | Horizontal<br>Scale/<br>Duration<br>of Event | Peak<br>Radar<br>Reflectivity<br>(along<br>flight path) |
|-------|-----------------------------|-----------------------------------------------------------------------------------|------|----------------------------------------------------------|----------|----------------------------------------------|---------------------------------------------------------|
| 181-4 | 22                          | 0.21                                                                              | 0.44 | 3.5 m/s                                                  | -3 m/s   | undetermined                                 | NA                                                      |
| 181-7 | 19                          | 0.15                                                                              | 0.30 | 5.5 m/s                                                  | -1 m/s   | undetermined                                 | 25<br>dBz                                               |
| 181-8 | 19                          | 0.16                                                                              | 0.35 | 5.5 m/s                                                  | -2 m/s   | 10 km /<br>60 sec                            | 27<br>dBz                                               |
| 190-4 | 24                          | 0.28                                                                              | 0.73 | 11.5 m/s                                                 | -6.5 m/s | 10 km /<br>60 sec                            | 20<br>dBz                                               |
| 190-6 | 24                          | 0.35                                                                              | 0.78 | 15 m/s                                                   | -3 m/s   | 1.5 km /<br>6 sec                            | 23<br>dBz                                               |
| 191-3 | 33                          | 0.34                                                                              | 0.80 | 6 m/s                                                    | -15 m/s  | 7 km /<br>30 sec                             | 35<br>dBz                                               |
| 191-6 | 33                          | 0.44                                                                              | 0.84 | 17 m/s                                                   | -12 m/s  | 3.5 km /<br>15 sec                           | 33<br>dBz                                               |

### R - 190 December 13, 2000

- Along Gulf Coast; convective turbulence experienced in Central Mississippi and NE Louisiana
- Broad overrunning area of rain and convective cells with embedded thunderstorms
  - Peak storm tops: 43,000 ft
  - Cell movement: from southwest at 65 kts
- 2 significant turbulence events with peak in situ measurement:
  - $-\sigma_{\Delta n} = 0.35$
  - $-\epsilon^{1/3} = 0.78$





Flight 190 Dec. 13, 2000



## Flight Path 190 – RMS Normal Loads



## Flight 190 – Path with Satellite



# On Edge of Convection



## On Edge of Convection (cont.)





| Event | Altitude<br>(MSL)<br>(k ft) | Peak <i>In Situ</i> Turbulence $\sigma_{\Delta n}$ $\epsilon^{1/3}$ $(m^{2/3}/s)$ |      | Peak Vertical<br>Wind (m/s)<br>*from 1Hz data<br>Max Min |          | Horizontal<br>Scale/<br>Duration<br>of Event | Peak<br>Radar<br>Reflectivity<br>(along<br>flight path) |
|-------|-----------------------------|-----------------------------------------------------------------------------------|------|----------------------------------------------------------|----------|----------------------------------------------|---------------------------------------------------------|
| 181-4 | 22                          | 0.21                                                                              | 0.44 | 3.5 m/s                                                  | -3 m/s   | undetermined                                 | NA                                                      |
| 181-7 | 19                          | 0.15                                                                              | 0.30 | 5.5 m/s                                                  | -1 m/s   | undetermined                                 | 25<br>dBz                                               |
| 181-8 | 19                          | 0.16                                                                              | 0.35 | 5.5 m/s                                                  | -2 m/s   | 10 km /<br>60 sec                            | 27<br>dBz                                               |
| 190-4 | 24                          | 0.28                                                                              | 0.73 | 11.5 m/s                                                 | -6.5 m/s | 10 km /<br>60 sec                            | 20<br>dBz                                               |
| 190-6 | 24                          | 0.35                                                                              | 0.78 | 15 m/s                                                   | -3 m/s   | 1.5 km /<br>6 sec                            | 23<br>dBz                                               |
| 191-3 | 33                          | 0.34                                                                              | 0.80 | 6 m/s                                                    | -15 m/s  | 7 km /<br>30 sec                             | 35<br>dBz                                               |
| 191-6 | 33                          | 0.44                                                                              | 0.84 | 17 m/s                                                   | -12 m/s  | 3.5 km /<br>15 sec                           | 33<br>dBz                                               |

### R - 191 December 13, 2000

- S Georgia and N Florida Panhandle; turbulence experienced near Tallahassee, Fl and Valdosta, Ga
- Narrow line of convective cells
  - Peak storm tops: 43,000 ft
  - Cell movement: from southwest at 65 kts
- 2 significant turbulence events with peak in situ measurement:
  - $-\sigma_{\Delta n} = 0.35$
  - $-\epsilon^{1/3} = 0.78$







## Flight Path 191 – RMS Normal Loads



## Flight 191 – Path with Nowrad



# 1 km Visible Satellite 1845 Z December 14, 2000





## On Approach to Convection





### **TASS 100 m Simulation**





| Event | Altitude<br>(MSL)<br>(k ft) | Peak <i>In Situ</i> Turbulence $\sigma_{\Delta n}$ $\epsilon^{1/3}$ $(m^{2/3}/s)$ |      | Peak Vertical<br>Wind (m/s)<br>*from 1Hz data<br>Max Min |          | Horizontal<br>Scale/<br>Duration<br>of Event | Peak<br>Radar<br>Reflectivity<br>(along<br>flight path) |
|-------|-----------------------------|-----------------------------------------------------------------------------------|------|----------------------------------------------------------|----------|----------------------------------------------|---------------------------------------------------------|
| 181-4 | 22                          | 0.21                                                                              | 0.44 | 3.5 m/s                                                  | -3 m/s   | undetermined                                 | NA                                                      |
| 181-7 | 19                          | 0.15                                                                              | 0.30 | 5.5 m/s                                                  | -1 m/s   | undetermined                                 | 25<br>dBz                                               |
| 181-8 | 19                          | 0.16                                                                              | 0.35 | 5.5 m/s                                                  | -2 m/s   | 10 km /<br>60 sec                            | 27<br>dBz                                               |
| 190-4 | 24                          | 0.28                                                                              | 0.73 | 11.5 m/s                                                 | -6.5 m/s | 10 km /<br>60 sec                            | 20<br>dBz                                               |
| 190-6 | 24                          | 0.35                                                                              | 0.78 | 15 m/s                                                   | -3 m/s   | 1.5 km /<br>6 sec                            | 23<br>dBz                                               |
| 191-3 | 33                          | 0.34                                                                              | 0.80 | 6 m/s                                                    | -15 m/s  | 7 km /<br>30 sec                             | 35<br>dBz                                               |
| 191-6 | 33                          | 0.44                                                                              | 0.84 | 17 m/s                                                   | -12 m/s  | 3.5 km /<br>15 sec                           | 33<br>dBz                                               |

### **SUMMARY**

- 3 flight experiments into regions favorable for convectively-induced turbulence
- 7 significant turbulence events
- 3 events considered severe turbulence (based on  $\sigma_{\Delta n}$ )

